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Why Polytopes?

>

>

>

classical topic: Euclid, Plato, Archimedes

useful: that's what linear programming is about

concrete: compute (in Sage!), visualize

beautiful: images (by Leonardo ... in Sage)

combinatorial: parameters, extremal problems, e.g. f-vector
EXAMPLES: rich theory! (write a “Book of Examples’!?)
PROBLEMS: wonderful conjectures, challenges, things to do!






Before | start

“It is not unusual that a single example or a very few
shape an entire mathematical discipline. Examples are the
Petersen graph, cyclic polytopes, the Fano plane, the
prisoner dilemma, the real n-dimensional projective space
and the group of two by two nonsingular matrices. And it
seems that overall, we are short of examples.”

— Gil Kalai 2000: “Combinatorics with a Geometric Flavor”



Lecture 1:
3-Dimensional Polytopes



Definition

Definition (3-Dimensional Polytope)
A 3-dimensional polytope is the convex hull of a finite set of points,
which do not all lie on a plane:

For vi,...,v, € R3:

conv{vy,...,vp} = {X1v1+~--+x,,v,,€]R3: X1+ -+ x, =1,
X0y-++yXn >0}



Definition
Equivalently, any 3-polytope with n vertices is “by definition” a
linear image of the (n — 1)-dimensional simplex
Apr = {xeR": 3+ +x,=1,
X0y.--sXn >0}

=Y




Faces

Definition (Faces: vertices, edges, facets)

A face of a polytope consists of all points that maximize a linear
function.
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Faces

Definition (Faces: vertices, edges, facets)

A face of a polytope consists of all points that maximize a linear
function.

Each face is itself a polytope (of smaller dimension).

0-dimensional faces are called vertices,
1-dimensional faces are called edges,
(d — 1)-dimensional faces are called facets.

- N



Image: Wikipedia



Simple/simplicial polytopes

Definition

A 3-polytope is simplicial if all its 2-faces are triangles.

A 3-polytope is simple if all its vertices have degree 3.

(We do not talk much here about duality, but this exists, and is
important, and the dual of any simple polytope is simplicial, and
vice versa.)



Examples:
Truncated Hexahedron (cube), Icosahedron, and Cuboctahedron

Images: Wikipedia



The f-vector

Definition
For a 3-polytope P the f-vectoris f(P) = (fo, f1, f) with

f; := #i-dimensional faces of P.



The f-vector

Image: Wikipedia
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The f-vector
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The f-vector
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f-vector:



The f-vector

Image: Wikipedia

fo =12
=24
fh =14

f-vector: (12,24,14)



Euler's Equation

Proposition (Euler's Equation)
The face numbers of any 3-polytope satisfy

fo—fh+hHh=2



Euler's Equation

Proposition (Euler's Equation)
The face numbers of any 3-polytope satisfy

fo—fh+hHh=2

Proof.
There are 20 of them! Do it yourself!
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Twenty Proofs of Euler's Formula: V-E+F=2

Many theorems in mathematics are important enough that they have been proved repeatedly in surprisingly many different ways. Examples of this include the f infinitely man \ber
evaluation of zeta(2), the fundamental theorem of algebra (polynomials have roots), quadratic reciprocity (2 formula for testing whether an arithmetic progression contains a square) and the Pythagorean theorem
(which according to Wells has at least 367 proofs). This also sometimes happens for unimportant theorems, such as the fact that in any rectangle dissected into smaller rectangles, if each smaller rectangle has
integer width or height, so does the large one.

th

Thxs page lists proofs of the Euler formula: for any convex polyhedron, the number of vertices and faces together is exactly two more than the number of edges. Symbolically V-E+F=2. For instance, a
n has four vertices, four faces, and six edges; 4-6+4=2.

A version of the formula dates over 100 years earlier than Euler, to Descartes in 1630. Descartes gives 2 discrete form of the Gauss-Bonnet theorem, stating that the sum of the face angles of a polyhedron is 2(V
2), from which he infers that the number of plane angles is 2F+2V-4. The number of plane angles is always twice the number of edges, so this is equivalent to Euler's formula, but later authors such as Lekatos,
Malkevitch, and Polya disagree, fecling that the distinction between face angles and edges is t0o large for this to be viewed as the same formula. The formula V-E+F=2 was (re)discovered by Euler; he wrote
about it twice in 1750, and in 1752 published the result, with a faulty proof by induction for triangulated polyhedra based on removing a vertex and retriangulating the hole formed by its removal. The
retriangulation step does not necessarily preserve the convexity or planarity of the resulting shape, so the induction does not go through. Another early attempt at a proof, by Meister in 1784, is essentially the
triangle removal proof given here, but without justifying the existence of a triangle to remove. In 1794, Legendre provided a complete proof, using spherical angles. Cauchy got into the act in 1811, citing
Legendre and adding incomplete proofs based on triangle removal, ear decomposition, and tetrahedron removal from a tetrahedralization of a parttion of the polyhedron into smaller polyhedra. Hilton and
Pederson provide more references as well as entertaining speculation on Euler's discovery of the formula. Confusingly, other equations such as ¢! Pi = -1 and a?"i(") = 1 (mod ) also go by the name of "Euler's
formula”; Euler was a busy man.

e polyhedron formula, of course, can be generalized in many important ways, some using methods described below. One important generalization is to planar graphs. To form  planar graph from a
polyhedron, place a light source near one face of the polyhedron, and a plane on the other side.




The Upper Bound Theorem

Corollary (Upper Bound Theorem, 3D version)
The face numbers of any 3-polytope satisfy

fp < 2fg — 4.
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The Upper Bound Theorem

Corollary (Upper Bound Theorem, 3D version)
The face numbers of any 3-polytope satisfy

fp < 2fg — 4.

Proof.

Double counting yields 2f; > 3£,

with equality if P is simplicial.

Combine this with Euler's equation:

36 <2 =2f+H—2) =26 +2h — 4



The f-vectors of 3-polytopes (Steinitz 1906)

Theorem
The set of f-vectors of 3-dimensional polytopes is the set of all
integer points in a 2-dimensional cone:

f(Pa) = {(ﬁ)7f176)€Z3: ﬁ)_fl+fé:27
f2§2fb_47
fr<2h—41.



The f-vectors of 3-polytopes (Steinitz 1906)

18
17
16
15
14
13
12
I
10
9

PO O N ®

/4141413188
e

o
[o]

W=
Vo

fo

4 56 7 8 9101l 12 131415 1617 18
Figure 10.3.1
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The Face Lattice — The Combinatorial Type

Definition (The Face Lattice)

The set of all (1) faces of a polytope

(including the empty set and the polytope itself),
ordered by inclusion, is a finite lattice,

the face lattice of P.



The Face Lattice — The Combinatorial Type

Definition (The Face Lattice)

The set of all (1) faces of a polytope

(including the empty set and the polytope itself),
ordered by inclusion, is a finite lattice,

the face lattice of P.

The face lattice (as an abstract partially ordered set)
collects all the combinatorial information:

Definition (Combinatorially Equivalent)

Two polytopes are combinatorially equivalent if their face lattices
are isomorphic.
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Steinitz's Theorem [Ernst Steinitz 1922]

Theorem (Steinitz's Theorem)

There is a bijection between 3-connected planar graphs
and combinatorial types of 3-dimensional polytopes.




Proofs for Steinitz's Theorem
Three proofs yield three extensions:
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The Platonic Solids

Theorem (Euclid?: Classification of the Platonic Solids)
There are exactly five (similarity types of ) 3D regular polytopes:

Visd o0

Images: Wikipedia
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Theorem (Euclid?: Classification of the Platonic Solids)
There are exactly five (similarity types of ) 3D regular polytopes:

Frv R

Images: Wikipedia

Proof.
Necessity part (this is the only 5 possibly types): do it!



The Platonic Solids

Theorem (Euclid?: Classification of the Platonic Solids)
There are exactly five (similarity types of ) 3D regular polytopes:

Visd o0

Images: Wikipedia

Proof.
Necessity part (this is the only 5 possibly types): do it!
Sufficiency part (they exist): see the exercise sheet! O



The Archimedian Solids

Theorem (Kepler?: Classification of the Archimedian Solids)

There are exactly 13 (similarity types of) 3D Archimedian
polytopes:



Image: Kepler 1609



EXAMPLE: The pseudo-rhombicuboctahedron

Image: Wikipedia

“Miller solid” or “Johnson body J37"



EXAMPLE: The pseudo-rhombicuboctahedron

Sommerville (1906)




EXAMPLE: The pseudo-rhombicuboctahedron

OPEN PROBLEM:

Complete and correct write-up of the classification of the
Archimedian solids, including

— combinatorial classification

— existence

— uniqueness
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this result Wthh applies to vertices surrounded by four polvgons can be used to
exclude the case (3,3,4,4) above. These two results are collected together in the
following lemma.

Lemma. A polyhedron in which all the solid angles are surrounded in the same
way cannot have solid angles of the following types:

() where a is odd and b # c.

() where a # c.

PROOF: In the first case, the fact that all the solid angles have the same type im-
plies that the b-gon faces must alternate with the c-gon faces round the boundary
of an a-gon face. But, since a is assumed to be odd, this leads to a contradiction.
This is clearly seen in the example shown in Figure 4.14(a) which illustrates the
case when a = 7.

In case (i), we consider the way that the faces must be arranged around the
3-gon. At each angle, the face opposite the 3-gon is always a b-gon. Since all the
vertices have the same type, the sides of the 3-gon must be attached to a-gons
and c-gons, and these must alternate around the 3-gon. This again leads to an
inconsistency (see Figure 4.14(b)). m

[Cromwell 1997]



OPEN: Small coordinates?

Problem

Can one realize all 3-polytopes with polynomial size integer vertex
coordinates?

That is, can all n-vertex polytopes be realized with their vertices in
{0,1,...,n%}3, for some K?



OPEN: Small coordinates?

Even for stacked polytopes, this is hard to prove:
see [Demaine & Schulz, DCG 2017]




The coordinates of the vertices are:

+{(2,2,2),(2,2,1),(2,1,2),(1,2,2),
(2,-1,0),(2,0,-1),(-1,2,0),
(0,2,-1),(0,-1,2),(-1,0,2)}

Fig. 3. The smallest embedding of the dodecahedral graph as a convex polyhedron
[lgamberdiev, Nielsen & Schulz 2013]



Lecture 2:

The d-Cubes and
the Hypersimplices



What is a polytope?

Definition (V-Polytope, H-Polytope)
A V-Polytope is the convex hull P = conv(V) of a finite set of
points V C RY.



What is a polytope?

Definition (V-Polytope, H-Polytope)

A V-Polytope is the convex hull P = conv(V) of a finite set of
points V C RY.

An H-Polytope is the solution set P = {x € R? : Ax < b} of a

finite set of linear inequalities
— provided that this solution set is bounded.



Theorem (Weyl, Minkowski: V=H)
Every V-polytope is an H-polytope, and conversely.
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This can be proved by

1.
2.
3.

writing conv( V) as linear image of A,_1,

describing A,_1 by linear inequalities,

showing that “can be described by linear inequalities” is
preserved by “project down by one dimension.”



Theorem (Weyl, Minkowski: V=H)
Every V-polytope is an H-polytope, and conversely.

This can be proved by

1. writing conv(V) as linear image of A,_1,

2. describing A,,_1 by linear inequalities,

3. showing that “can be described by linear inequalities” is
preserved by “project down by one dimension.”

The converse direction is proved similarly — or by using duality.



Example: The d-cube

Definition (The d-cube)
The d-cube can be defined as
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= {xGRd:—lgx,-§+l for all 7}.
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This is a simple d-dimensional polytope,
with few (2d) facets and many (29) vertices!



Example: The d-cube

Definition (The d-cube)
The d-cube can be defined as

Cqy = conv{-1,+1}¢
= {xeRd:—lgx,-§+l for all 7}.

This is a simple d-dimensional polytope,
with few (2d) facets and many (29) vertices!

Similarly the d-dimensional octahedron (“cross polytope”)
has few (2d) vertices and many (29) facets!






n (Corpus Hypercubus), by S. Dali 1954

Image: Crucifixiol




Image: “Robocopus Hypercubus” by Tim Doyle



The convex hull problem

OPEN PROBLEM:
Given the vertices of a polytope,
can you enumerate the facet-defining inequalities in polynomial

time per facet?



The convex hull problem

OPEN PROBLEM:

Given the vertices of a polytope,

can you enumerate the facet-defining inequalities in polynomial
time per facet?

OPEN PROBLEM:

Given a set of points and a set of inequalities,

can you tell in polynomial time whether they describe the same
polytope?



Faces and the face lattice

Definition: faces, f-vector, face lattice



Faces and the face lattice

face lattice

Definition: faces, f-vector
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The f-vector of the 4-cube is
f(C4) = ( ) ) ) )



The f-vector of the 4-cube is
f(C)=(16, , , ).



The f-vector of the 4-cube is
f(Cy) =(16,32, , ).



The f-vector of the 4-cube is
F(Cs) = (16, 32, 24, ).



The f-vector of the 4-cube is
F(Cs) = (16, 32, 24, 8).



Example: The d-cube

Theorem (The f-vector of the d-cube)
fo =29,
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Example: The d-cube

Theorem (The f-vector of the d-cube)
fo =29,

fqg—1 = 2d,
o= 29(0) 2



Example: The d-cube

Theorem (The f-vector of the d-cube)
fo =27,

fqg—1 = 2d,
o= 29(0) 2 = ()20~



Example: The d-cube

Theorem (The f-vector of the d-cube)
fo =27,

fqg—1 = 2d,
=242 = ()2

Note that the d-cube is simple — this can be seen from 2f; = df.



The Euler-Poincaré equation

Theorem (Euler-Poincaré equation)

For every d-dimensional polytope,
fo—f+h+-+ (-1 =1—(-1)%
Proof.

Shelling! [Schlafli ca. 1850] [Brugesser-Mani 1970]
Homology [Poincaré ca. 1905]



The Hypersimplices

Definition (The Hypersimplices — two versions)

For 1 < k < d, the d-dimensional hypersimplices A4(k) and AL (k)
are given by

d+1
Ag(k) = {xeo,1]9: > xi =k}
i=1



The Hypersimplices

Definition (The Hypersimplices — two versions)

For 1 < k < d, the d-dimensional hypersimplices A4(k) and AL (k)
are given by

d+1
Ag(k) = {xe]0,1]9+: > xi =k}

i=1
d

w(k) = {xe01]? i k-1<> X<k}
i=1



The Hypersimplices




The Hypersimplices

Proposition
1. Ay4(1) and Ay(d) are simplices.
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Proposition
1. Ay4(1) and Ay(d) are simplices.

2. Ag4(k) is a translate of —Ay4(d + 1 — k).
3. Ay(k) and Al)(k) are affinely equivalent.



The Hypersimplices

Proposition
1. Ay4(1) and Ay(d) are simplices.

2. Ay(k) is a translate of —A4(d + 1 — k).
3. Ay(k) and Al)(k) are affinely equivalent.
4

. All vertices of Ay(k) are equivalent under symmetry.



The Hypersimplices

Proposition
1. Ay4(1) and Ay(d) are simplices.

2. Ay(k) is a translate of —A4(d + 1 — k).
3. Ay(k) and Al)(k) are affinely equivalent.
4. All vertices of Ay(k) are equivalent under symmetry.
5

. Ag(k) has 2(d + 1) facets, of two types:
d+1 of type Adfl(k)
d+1 of type Ay_1(k — 1)



The Hypersimplices

Proposition

1.

A4(1) and Ay(d) are simplices.

2. Ay(k) is a translate of —A4(d + 1 — k).
3.
4
5

Ag(k) and Al,(k) are affinely equivalent.

. All vertices of Ay(k) are equivalent under symmetry.

. Ag(k) has 2(d + 1) facets, of two types:

d+1 of type Adfl(k)
d+1 of type Ay_1(k — 1)

. Dg(4FL) is centrally symmetric (for odd d)



EXAMPLE: “The hypersimplex” A4(2)
Dy(2)



EXAMPLE: “The hypersimplex” A4(2)
A4(2)
f = (10,30, 30, 10)



EXAMPLE: “The hypersimplex” A4(2)
A4(2)
f = (10,30, 30, 10)
facets: 5 simplices A3(1), 5 octahedra A3(2)



EXAMPLE: “The hypersimplex” A4(2)
A4(2)
f = (10,30, 30, 10)
facets: 5 simplices A3(1), 5 octahedra A3(2)




EXAMPLE: “The hypersimplex” A4(2)

Definition/Lemma: A4(2) is 2-simple 2-simplicial



EXAMPLE: “The hypersimplex” A4(2)

Definition/Lemma: A4(2) is 2-simple 2-simplicial
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EXAMPLE: “The hypersimplex” A4(2)

Definition/Lemma: A4(2) is 2-simple 2-simplicial




EXAMPLE: “The hypersimplex” A4(2)

OPEN PROBLEM (The “fatness problem”):
For a 4-polytope with fy = f3 = n, how large can f; = £ be?



Lecture 3:

Extremal Polytopes,
Extremal f-Vectors



Simplicial polytopes

Definition
A d-dimensional polytope is simplicial if all its facets are simplices,
that is, they have exactly d vertices.



Simplicial polytopes

Definition
A d-dimensional polytope is simplicial if all its facets are simplices,
that is, they have exactly d vertices.

Proposition (Klee)

For any fixed n > d, some simplicial polytope maximizes all face
numbers among all d-polytopes with n vertices.



Simplicial polytopes

Definition
A d-dimensional polytope is simplicial if all its facets are simplices,
that is, they have exactly d vertices.

Proposition (Klee)

For any fixed n > d, some simplicial polytope maximizes all face
numbers among all d-polytopes with n vertices.

Proof.

“Pull the vertices”, one by one. O



The Upper Bound Theorem, 4D version

Theorem (Upper Bound Theorem, 4D version)
The face numbers of any 4-polytope with fy = n vertices satisfy

fi
f2
f3

IN N IA

zn(n—1) = (3).
n(n - 3)’
%n(n -3),

with equality for any neighborly 4-polytope, for which any two

vertices are adjacent.



The Upper Bound Theorem, 4D version

Theorem (Upper Bound Theorem, 4D version)
The face numbers of any 4-polytope with fy = n vertices satisfy

A< dnn-1)= (),
fr < n(n-3),
3 < %n(n—3),

with equality for any neighborly 4-polytope, for which any two
vertices are adjacent.

Proof.

The inequality for f; is obvious.

We may assume that the polytope is simplicial.
Then f, = 2f;.

Use the Euler-Poincaré equation.



EXAMPLE: A Neighborly Polytope

EXAMPLE: C4(6) = Az & Ay (sum of two triangles)



Neighborly 4-Polytopes Exist

Definition (Curve of order d)

A curve v : R — R has order d if any hyperplane hits it in at
most d points.



Neighborly 4-Polytopes Exist

Definition (Curve of order d)

A curve v : R — R has order d if any hyperplane hits it in at
most d points.

Examples:
Any convex curve in the plane,
The moment curve (t) = (t,t2,...,t%),

The binomial curve 6(t) = (t,(5),.--, (;)).
The Carathéodory curve c(t) = (cos t,sin t, cos 2t, sin 2t).



The Cyclic Polytopes

Definition (Cyclic Polytopes)

For n > d > 2, take any curve x : R — R of order d.

Then a d-dimensional cyclic polytope on n vertices is given by the
convex hull of any n distinct points on the curve ~, that is

Cy(n) := conv{x(t1), x(t2), ... , x(tn)}

for real values t; < th < -+ < t.



The Cyclic Polytopes

Definition (Cyclic Polytopes)

For n > d > 2, take any curve x : R — R of order d.

Then a d-dimensional cyclic polytope on n vertices is given by the
convex hull of any n distinct points on the curve ~, that is

Cy(n) := conv{x(t1), x(t2), ... , x(tn)}

for real values t; < th < -+ < t.

x(t1)




The Gale Evenness Criterion

Theorem (Gale Evenness Criterion)

Any cyclic d-polytope on n vertices C4(n) is simplicial.
Its vertices are given by those strings of d F'sand n—d O's,
for which the F's come in pairs,

except possibly at the beginning and the end.



The Gale Evenness Criterion

Theorem (Gale Evenness Criterion)

Any cyclic d-polytope on n vertices C4(n) is simplicial.

Its vertices are given by those strings of d F'sand n—d O's,
for which the F's come in pairs,

except possibly at the beginning and the end.

Proof.

By picture:

Example d =6, n=12
Facet OFFOOOFFFF OO




The Cyclic Polytopes are Neighborly

Corollary

The cyclic polytopes are neighborly:

Any |d/2] vertices form a face.

In particular, for d > 4, the graph is complete.



The Cyclic Polytopes are Neighborly

Corollary

The cyclic polytopes are neighborly:
Any |d/2] vertices form a face.
In particular, for d > 4, the graph is complete.

Theorem (The Upper Bound Theorem, McMullen 1970)
The face numbers of any d-polytope P with foy = n vertices satisfy

fi(P) < fi(Ca(n)).

Thus the cyclic polytopes simultaneously maximize all face
numbers, among all d-polytopes with n-vertices.



OPEN: Cyclic/neighborly polytopes with small integer coordinates?
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Describe the set f(P?) of f-vectors of convex d-dimensional
polytopes.
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The f-vector problem

Describe the set f(P?) of f-vectors of convex d-dimensional
polytopes.

This is a set of integer points in Z9!

That is,

» find criteria that tell us whether a vector (fo,...,fy_1) is an
f-vector or not, and

» describe/characterize the set f(P9).

For example,
OPEN PROBLEM: Is (1000, 10000, 10000, 1000) an f-vector of a
4-dimensional polytope?



The f-vector problem
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described f(P3)

Steinitz (1906)



The f-vector problem

described f(P3)

Steinitz (1906)

dim f(P9) =d — 1:
Euler’s equation
is the only affine
equation for f(P9)

Griinbaum (1960s)

Projections of f(P*)
to two coordinates




The f-vector problem

described (P
escribed f(P?) characterizes f(P9)

Steinitz (1906)

g-Theorem (1980)

dim f(P9) =d — 1:
Euler’s equation
is the only affine
equation for f(P9)

Griinbaum (1960s)

Projections of f(P*)
to two coordinates



The f-vectors of 3-polytopes (Steinitz 1906)

12 1

10 1

fo

14 1

12

14

:fo



The f-vectors of 3-polytopes (Steinitz 1906)

Theorem
The set of f-vectors of 3-dimensional polytopes is the set of all
integer points in a 2-dimensional cone:

f(Pa) = {(ﬁ)7f176)€Z3: ﬁ)_fl+fé:27
f2§2fb_47
fr<2h—41.



The pairs (fy, f3) for 4-polytopes (Griinbaum 1967)
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Figure 10.4.1



The pairs (fy, f3) for 4-polytopes (Griinbaum 1967)



The pairs (fy, f3) for 4-polytopes (Griinbaum 1967)

Theorem

The set of pairs (fy, f3) of vertex and facet numbers
of 4-dimensional polytopes

is the set of all integer points between two parabolas:

To3f(P*) = {(fo, )€ Z?: £ <if(fh—3),
fo < 5f(f —3),
fo+f>10}.

NI N[






The pairs (fo, f1) for 4-polytopes (Griinbaum 1967)

20




The pairs (fy, fi) for 4-polytopes (Griinbaum 1967)

Theorem

The set of pairs (fy, f) of vertex and edge numbers

of 4-dimensional polytopes

is the set of all integer points between a line and a parabola,
with four exceptions:

mouf (P*Y) = {(h h) €Z% + 10<2f < < 3h(fh—1)}
\ {(6,12), (7,14), (8,17), (10,20) }.



The pairs (fy, f) for 4-polytopes (Barnette & Reay 1973)
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The pairs (fo, f2) for 4-polytopes (Barnette & Reay 1973)
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The pairs (fy, ) for 4-polytopes (Barnette & Reay 1973)

Theorem

The set of pairs (fy, f2) of 4-dimensional polytopes is the set of all
integer points between two parabolas, except for the integer points
on an exceptional parabola, and ten more exceptional points:

To2f (P*) = {(f,h)€Z® : 5<h,
fot+3+3V8h+9<h,
f < f§ — 3f,
f # f§ —3f — 1}
\ {(6, 12), (6, 14), (7, 13), (7, 15), (8, 15),
(8,16), (9,16), (10,17), (11,20), (13,21) }.



The pairs (fo + 5, 1 + ) (Brinkmann & Z. 2017)

size < 12 4
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size = fo + f3 — 10



Lecture 4
My Top Ten List of Examples



The List

1. A pentagon that tiles

2. A polyhedron that tiles

3. The pseudo-rhombicuboctahedron

4. A centrally-symmetric neighborly polytope
5. The 24-cell

6. The stellated 120-cell

7. The Klee—~Walkup polytope

8. A neighborly cubical polytope

9. The Hansen polytope of a 4-path

10. The 4-simple, 4-simplicial Wythoff polytope



1. A Pentagon That Tiles

Casey Mann, Jennifer McLoud-Mann & David Von Derau (2015)

~4

8 ~

i i, )~
- T VRVE-1) A

D = 90° d=1/2

E = 150° e=1/2 (b)

A 3-block transitive tiling by the Type 15 pentagon. The thick
white lines outline the 3-block, and the colors of the tiles
indicate the transitivity classes of pentagons.
Figure 10: The Type 15 pentagon

Image: Mann, McLoud-Mann & Von Derau (2015), arXiv:1510.01186


arXiv:1510.01186

1. A Pentagon That Tiles

Theorem (Michaél Rao, 2017)

All pentagons that tile the plane are given by the list of 15 known
families.

o
;|
i

Image: Wikipedia

=




2. A Polyhedron That Tiles

f(E) = (38,106,70) (Engel 1981)
B 1 .

G
aEs

© Abb.4. Zwei Ansichten eines Exemplars des Polyedertyps 38.70-1



2. A Polyhedron That Tiles

Abb.5. Kantengraph fitr den Polyedertyp 38.70-1



2. A Polyhedron That Tiles

OPEN PROBLEMS:
» How many vertices/facets can polyhedron have that tiles?

> |s the maximum finite at all, in any dimension?



3. The Pseudo-Rhombicuboctahedron

. also known as “Miller solid” or “Johnson body J37"
... first appears in paper by Sommerville (1906)



3. The Pseudo-Rhombicuboctahedron

OPEN PROBLEM:

Complete and correct write-up of the classification of the
Archimedian solids, including

— combinatorial classification

— existence

— uniqueness



4. A Centrally-symmetric Neighborly 4-polytope

P :=conv{A4 U (—A4)}
f = (10,40, 60, 30), simplicial, centrally symmetric neighborly!
Its boundary arises as (2 x 5)-multi-chessboard complex

Recent discovery (Engstrom, A. Haase, Stump, Z.):
not vertex-decomposable!



4. A Centrally-symmetric Neighborly 4-polytope

P :=conv{A4 U (—A4)}
f = (10,40, 60, 30), simplicial, centrally symmetric neighborly!
Its boundary arises as (2 x 5)-multi-chessboard complex

Recent discovery (Engstrom, A. Haase, Stump, Z.):
not vertex-decomposable!

OPEN PROBLEM:
“How neighborly can a centrally-symmetric polytope be?”



5. The 24-Cell

(a) Schlegel diagram of the regular 24-

cell.




5. The 24-Cell

(b) Schlegel diagram of a polytope in the family of Ta-
ble 3.5: a;,b; = %

OPEN PROBLEM:
How does the realization space of the 24-cell look like? What's its
dimension? Is it a manifold? [Rastanawi 2018]

Paffenholz (2005)




6. The Stellated 120-Cell

f-vector f = (720, 5040, 5040, 720)



6. The Stellated 120-Cell

f-vector f = (720,5040,5040, 720)

OPEN PROBLEM:
e Does this polytope have rational coordinates?
e Is it projectively unique?



7. The Klee—Walkup Polytope

Klee & Walkup (1967) constructed a simple 4-polytope Q4 with 9
facets and graph diameter 5 that is tight for the Hirsch conjecture.
Its dual has f-vector (9, 36,54, 27): dual-to-neighborly!

abed

|
acde

|
adeh

|

adgh

v

efgh — afgh — adfg

|/

cdeh
cdgh

cdfg

/|

bceh
begh
befg
bedf

abed

— begh — efgh
/



7. The Klee—Walkup Polytope

OPEN PROBLEMS:

o Identify this polytope in the classification neighborly 4-polytopes
by Altshuler & Steinberg (1973).

e |s it the polytope that is extremal for the monotone upper bound
problem, according to Pfeifle (2005)?

e The Hirsch conjecture for d = 4.

Pfeifle’s C~)4:




8. A Neighborly Cubical Polytope
A 4-polytope with the graph of the 5-cube:
conv{(2Q x Q) U (Q x 2Q)}
for a square Q = [—1,1]>.

P —

/




8. A Neighborly Cubical Polytope
A 4-polytope with the graph of the 5-cube:
conv{(2Q x Q) U (Q x 2Q)}
for a square Q = [—1,1]>.

P—

/

/
OPEN PROBLEM:
Are there centrally-symmetric neighborly n-cubical d-polytopes for
all n>d > 47



9. The Hansen Polytope of a 4-Path

Hansen's (1977) construction applied to the path Pj:
o centrally-symmetric

o dimension d =5

o f-vector (16, 64,98, 64,16)

i.e. 39 4+ 16 non-empty faces.



9. The Hansen Polytope of a 4-Path

Hansen's (1977) construction applied to the path Pj:
o centrally-symmetric

o dimension d =5

o f-vector (16, 64,98, 64,16)

i.e. 39 4+ 16 non-empty faces.

OPEN PROBLEMS:
e Kalai's 39-conjecture:

Does every c.s.-polytope have at least 3¢ non-empty faces?
e Also Kalai:

Does every c.s.-polytope have at least 29d! complete flags?
e Mahler's conjecture:

Does every c.s. convex body have V(B)V(B*) > 49/d!
e And what is the connection between these three conjectures?
(All of them are supposed to be tight at the Hanner polytopes.)



10. The 4-Simple, 4-Simplicial Wythoff polytope

*—® oo .—I—o... ._@
_ —_—
s . ¥
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Figure 4.3: The general graph for Gosset-Elte polytopes.
o finite if
1 n 1 n 1 -
r+1 s+1 t+1

o dimensiond =r+s+t
o (r+ 2)-simplicial and (s + t — 1)-simple

1



10. The 4-Simple, 4-Simplicial Wythoff polytope
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Figure 4.3: The general graph for Gosset-Elte polytopes.
o finite if
1 n 1 n 1 -
r+1 s+1 t+1

o dimensiond =r+s+t
o (r+ 2)-simplicial and (s + t — 1)-simple

1

“241" has dimension 8, is 4-simplicial 4-simple, f-vector
(2160, 69120, 483840, 1209600, 1209600, 544320, 144960, 17520)



10. The 4-Simple, 4-Simplicial Wythoff polytope

*—=® ... .—I—o... ._@
)

Figure 4.3: The general graph for Gosset-Elte polytopes.
o finite if
1 n 1 n 1 -
r+1 s+1 t+1

o dimensiond =r+s+t
o (r+ 2)-simplicial and (s + t — 1)-simple

1

“241" has dimension 8, is 4-simplicial 4-simple, f-vector
(2160, 69120, 483840, 1209600, 1209600, 544320, 144960, 17520)

OPEN PROBLEM:
Is there a 5-simple 5-simplicial polytope (other than the simplex)?



ial Wythoff Polytope

10. The 4-Simple, 4-Simplic
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11. A 4-Polytope with Only lcosahedra as Facets

Is there a 4-polytope all whose facets are icosahedra?
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Kalai has observed that such a polytope has fatness larger than 10!



11. A 4-Polytope with Only lcosahedra as Facets

Is there a 4-polytope all whose facets are icosahedra?
This is a Problem by Perles & Shephard 1967.

Kalai has observed that such a polytope has fatness larger than 10!

This follows from
foz = 12f3: Each facet has 12 vertices on average.
foz3 > 12fy: Each vertex is in at least 12 facets, so fp < f3
foo = 3f: Each 2-face has three vertices.
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