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Before I start

Why Polytopes?

I classical topic: Euclid, Plato, Archimedes
I useful: that’s what linear programming is about
I concrete: compute (in Sage!), visualize
I beautiful: images (by Leonardo . . . in Sage)
I combinatorial: parameters, extremal problems, e.g. f -vector
I EXAMPLES: rich theory! (write a “Book of Examples”!?)
I PROBLEMS: wonderful conjectures, challenges, things to do!
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Before I start

“It is not unusual that a single example or a very few
shape an entire mathematical discipline. Examples are the
Petersen graph, cyclic polytopes, the Fano plane, the
prisoner dilemma, the real n-dimensional projective space
and the group of two by two nonsingular matrices. And it
seems that overall, we are short of examples.”

— Gil Kalai 2000: “Combinatorics with a Geometric Flavor”



Lecture 1:
3-Dimensional Polytopes



Definition

Definition (3-Dimensional Polytope)
A 3-dimensional polytope is the convex hull of a finite set of points,
which do not all lie on a plane:

For v1, . . . , vn ∈ R3:

conv{v1, . . . , vn} := {x1v1 + · · ·+ xnvn ∈ R3 : x1 + · · ·+ xn = 1,
x0, . . . , xn ≥ 0 }



Definition
Equivalently, any 3-polytope with n vertices is “by definition” a
linear image of the (n − 1)-dimensional simplex

∆n−1 := {x ∈ Rn : x1 + · · ·+ xn = 1,
x0, . . . , xn ≥ 0 }.



Faces

Definition (Faces: vertices, edges, facets)
A face of a polytope consists of all points that maximize a linear
function.

Each face is itself a polytope (of smaller dimension).

0-dimensional faces are called vertices,
1-dimensional faces are called edges,
(d − 1)-dimensional faces are called facets.
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Simple/simplicial polytopes

Definition
A 3-polytope is simplicial if all its 2-faces are triangles.
A 3-polytope is simple if all its vertices have degree 3.
(We do not talk much here about duality, but this exists, and is
important, and the dual of any simple polytope is simplicial, and
vice versa.)



Examples:
Truncated Hexahedron (cube), Icosahedron, and Cuboctahedron

Images: Wikipedia



The f -vector

Definition
For a 3-polytope P the f -vector is f (P) = (f0, f1, f2) with

fi := #i-dimensional faces of P.



The f -vector

Image: Wikipedia

f0 =

12
f1 = 24
f2 = 14

f -vector: (12, 24, 14)
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Euler’s Equation

Proposition (Euler’s Equation)
The face numbers of any 3-polytope satisfy

f0 − f1 + f2 = 2.

Proof.
There are 20 of them! Do it yourself!
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The Upper Bound Theorem

Corollary (Upper Bound Theorem, 3D version)
The face numbers of any 3-polytope satisfy

f2 ≤ 2f0 − 4.

Proof.
Double counting yields 2f1 ≥ 3f2,
with equality if P is simplicial.
Combine this with Euler’s equation:
3f2 ≤ 2f1 = 2(f0 + f2 − 2) = 2f0 + 2f2 − 4.
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The f -vectors of 3-polytopes (Steinitz 1906)

Theorem
The set of f-vectors of 3-dimensional polytopes is the set of all
integer points in a 2-dimensional cone:

f (P3) = {(f0, f1, f2) ∈ Z3 : f0 − f1 + f2 = 2,
f2 ≤ 2f0 − 4,
f0 ≤ 2f2 − 4 }.



The f -vectors of 3-polytopes (Steinitz 1906)
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The Face Lattice — The Combinatorial Type

Definition (The Face Lattice)
The set of all (!) faces of a polytope
(including the empty set and the polytope itself),
ordered by inclusion, is a finite lattice,
the face lattice of P .

The face lattice (as an abstract partially ordered set)
collects all the combinatorial information:

Definition (Combinatorially Equivalent)
Two polytopes are combinatorially equivalent if their face lattices
are isomorphic.
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The Face Lattice — The Combinatorial Type
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Steinitz’s Theorem [Ernst Steinitz 1922]

Theorem (Steinitz’s Theorem)
There is a bijection between 3-connected planar graphs
and combinatorial types of 3-dimensional polytopes.



Proofs for Steinitz’s Theorem
Three proofs yield three extensions:

1. Steinitz-type proof:
realization space is ball of dimension f1 + 6.

2. Tutte’s rubber-band proof:
integer coordinates with polynomially many digits.

3. Koebe–Andreev–Thurston circle-packing proof:
edge-tangent realization, unique!
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The Platonic Solids

Theorem (Euclid?: Classification of the Platonic Solids)
There are exactly five (similarity types of) 3D regular polytopes:

Images: Wikipedia

Proof.
Necessity part (this is the only 5 possibly types): do it!
Sufficiency part (they exist): see the exercise sheet!
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Necessity part (this is the only 5 possibly types): do it!
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The Archimedian Solids

Theorem (Kepler?: Classification of the Archimedian Solids)
There are exactly 13 (similarity types of) 3D Archimedian
polytopes:



Image: Kepler 1609



EXAMPLE: The pseudo-rhombicuboctahedron

Image: Wikipedia

“Miller solid” or “Johnson body J37”



EXAMPLE: The pseudo-rhombicuboctahedron

Sommerville (1906)



EXAMPLE: The pseudo-rhombicuboctahedron

OPEN PROBLEM:
Complete and correct write-up of the classification of the
Archimedian solids, including
— combinatorial classification
— existence
— uniqueness



[Cromwell 1997]



OPEN: Small coordinates?

Problem
Can one realize all 3-polytopes with polynomial size integer vertex
coordinates?
That is, can all n-vertex polytopes be realized with their vertices in
{0, 1, . . . , nK}3, for some K?



OPEN: Small coordinates?

Even for stacked polytopes, this is hard to prove:
see [Demaine & Schulz, DCG 2017]



[Igamberdiev, Nielsen & Schulz 2013]



Lecture 2:
The d-Cubes and
the Hypersimplices



What is a polytope?

Definition (V-Polytope, H-Polytope)
A V-Polytope is the convex hull P = conv(V ) of a finite set of
points V ⊂ Rd .

An H-Polytope is the solution set P = {x ∈ Rd : Ax ≤ b} of a
finite set of linear inequalities
— provided that this solution set is bounded.
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V=H

Theorem (Weyl, Minkowski: V=H)
Every V -polytope is an H-polytope, and conversely.

This can be proved by
1. writing conv(V ) as linear image of ∆n−1,
2. describing ∆n−1 by linear inequalities,
3. showing that “can be described by linear inequalities” is

preserved by “project down by one dimension.”

The converse direction is proved similarly – or by using duality.
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Example: The d-cube

Definition (The d-cube)
The d-cube can be defined as

Cd := conv{−1,+1}d

= {x ∈ Rd : −1 ≤ xi ≤ +1 for all i}.

This is a simple d-dimensional polytope,
with few (2d) facets and many (2d) vertices!

Similarly the d-dimensional octahedron (“cross polytope”)
has few (2d) vertices and many (2d) facets!
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Image: Crucifixion (Corpus Hypercubus), by S. Dali 1954



Image: “Robocopus Hypercubus” by Tim Doyle



The convex hull problem

OPEN PROBLEM:
Given the vertices of a polytope,
can you enumerate the facet-defining inequalities in polynomial
time per facet?

OPEN PROBLEM:
Given a set of points and a set of inequalities,
can you tell in polynomial time whether they describe the same
polytope?
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Faces and the face lattice

Definition: faces, f-vector, face lattice

0 1 2 3 4 5 6
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The f -vector of the 4-cube is
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The f -vector of the 4-cube is

f (C4) = (16, 32, 24, 8).



Example: The d-cube

Theorem (The f -vector of the d-cube)
f0 = 2d ,

fd−1 = 2d ,

fk = 2d
(d
k

)
/2k =

(d
k

)
2d−k .

Note that the d-cube is simple — this can be seen from 2f1 = df0.
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The Euler-Poincaré equation

Theorem (Euler-Poincaré equation)
For every d-dimensional polytope,

f0 − f1 + f2 + · · ·+ (−1)d−1fd−1 = 1− (−1)d .

Proof.
Shelling! [Schläfli ca. 1850] [Brugesser-Mani 1970]
Homology [Poincaré ca. 1905]



The Hypersimplices

Definition (The Hypersimplices – two versions)
For 1 ≤ k ≤ d , the d-dimensional hypersimplices ∆d(k) and ∆′d(k)
are given by

∆d(k) := {x ∈ [0, 1]d+1 :
d+1∑
i=1

xi = k}

∆′d(k) := {x ∈ [0, 1]d : k − 1 ≤
d∑

i=1

xi ≤ k}
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The Hypersimplices

Proposition
1. ∆d(1) and ∆d(d) are simplices.

2. ∆d(k) is a translate of −∆d(d + 1− k).

3. ∆d(k) and ∆′d(k) are affinely equivalent.

4. All vertices of ∆d(k) are equivalent under symmetry.

5. ∆d(k) has 2(d + 1) facets, of two types:
d + 1 of type ∆d−1(k)
d + 1 of type ∆d−1(k − 1)

6. ∆d(d+1
2 ) is centrally symmetric (for odd d)
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EXAMPLE: “The hypersimplex” ∆4(2)
∆4(2)

f = (10, 30, 30, 10)

facets: 5 simplices ∆3(1), 5 octahedra ∆3(2)



EXAMPLE: “The hypersimplex” ∆4(2)
∆4(2)

f = (10, 30, 30, 10)

facets: 5 simplices ∆3(1), 5 octahedra ∆3(2)



EXAMPLE: “The hypersimplex” ∆4(2)
∆4(2)

f = (10, 30, 30, 10)

facets: 5 simplices ∆3(1), 5 octahedra ∆3(2)



EXAMPLE: “The hypersimplex” ∆4(2)
∆4(2)

f = (10, 30, 30, 10)

facets: 5 simplices ∆3(1), 5 octahedra ∆3(2)



EXAMPLE: “The hypersimplex” ∆4(2)
Definition/Lemma: ∆4(2) is 2-simple 2-simplicial



EXAMPLE: “The hypersimplex” ∆4(2)
Definition/Lemma: ∆4(2) is 2-simple 2-simplicial



EXAMPLE: “The hypersimplex” ∆4(2)
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EXAMPLE: “The hypersimplex” ∆4(2)

OPEN PROBLEM (The “fatness problem”):
For a 4-polytope with f0 = f3 = n, how large can f1 = f2 be?



Lecture 3:
Extremal Polytopes,
Extremal f -Vectors



Simplicial polytopes

Definition
A d-dimensional polytope is simplicial if all its facets are simplices,
that is, they have exactly d vertices.

Proposition (Klee)
For any fixed n > d , some simplicial polytope maximizes all face
numbers among all d-polytopes with n vertices.

Proof.
“Pull the vertices”, one by one.
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The Upper Bound Theorem, 4D version

Theorem (Upper Bound Theorem, 4D version)
The face numbers of any 4-polytope with f0 = n vertices satisfy

f1 ≤ 1
2n(n − 1) =

(n
2

)
,

f2 ≤ n(n − 3),

f3 ≤ 1
2n(n − 3),

with equality for any neighborly 4-polytope, for which any two
vertices are adjacent.

Proof.
The inequality for f1 is obvious.
We may assume that the polytope is simplicial.
Then f2 = 2f3.
Use the Euler-Poincaré equation.
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Use the Euler-Poincaré equation.



EXAMPLE: A Neighborly Polytope

EXAMPLE: C4(6) = ∆2 ⊕∆2 (sum of two triangles)



Neighborly 4-Polytopes Exist

Definition (Curve of order d)
A curve γ : R −→ Rd has order d if any hyperplane hits it in at
most d points.

Examples:
Any convex curve in the plane,
The moment curve γ(t) = (t, t2, . . . , td),
The binomial curve δ(t) = (t,

(t
2

)
, . . . ,

(t
k

)
),

The Carathéodory curve c(t) = (cos t, sin t, cos 2t, sin 2t).
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The Cyclic Polytopes
Definition (Cyclic Polytopes)
For n > d ≥ 2, take any curve x : R→ Rd of order d .
Then a d-dimensional cyclic polytope on n vertices is given by the
convex hull of any n distinct points on the curve γ, that is

Cd(n) := conv{x(t1), x(t2), . . . , x(tn)}

for real values t1 < t2 < · · · < tn.
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The Gale Evenness Criterion
Theorem (Gale Evenness Criterion)
Any cyclic d-polytope on n vertices Cd(n) is simplicial.
Its vertices are given by those strings of d F ’s and n − d O’s,
for which the F ’s come in pairs,
except possibly at the beginning and the end.

Proof.
By picture:
Example d = 6, n = 12
Facet OFFOOOFFFFOO



The Gale Evenness Criterion
Theorem (Gale Evenness Criterion)
Any cyclic d-polytope on n vertices Cd(n) is simplicial.
Its vertices are given by those strings of d F ’s and n − d O’s,
for which the F ’s come in pairs,
except possibly at the beginning and the end.

Proof.
By picture:
Example d = 6, n = 12
Facet OFFOOOFFFFOO



The Cyclic Polytopes are Neighborly

Corollary
The cyclic polytopes are neighborly:
Any bd/2c vertices form a face.
In particular, for d ≥ 4, the graph is complete.

Theorem (The Upper Bound Theorem, McMullen 1970)
The face numbers of any d-polytope P with f0 = n vertices satisfy

fi (P) ≤ fi (Cd(n)).

Thus the cyclic polytopes simultaneously maximize all face
numbers, among all d-polytopes with n-vertices.
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OPEN: Cyclic/neighborly polytopes with small integer coordinates?



The f -vector problem

Describe the set f (Pd) of f -vectors of convex d-dimensional
polytopes.

This is a set of integer points in Zd !

That is,
I find criteria that tell us whether a vector (f0, . . . , fd−1) is an

f -vector or not, and
I describe/characterize the set f (Pd).

For example,
OPEN PROBLEM: Is (1000, 10000, 10000, 1000) an f -vector of a
4-dimensional polytope?
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The f -vector problem

determine
f (Pd) ⊂ Zd

Steinitz (1906)

described f (P3)

Grünbaum (1960s)

dim f (Pd) = d − 1:
Euler’s equation
is the only affine

equation for f (Pd)

Projections of f (P4)

to two coordinates

g -Theorem (1980)

characterizes f (Pd
s )
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The f -vectors of 3-polytopes (Steinitz 1906)
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The f -vectors of 3-polytopes (Steinitz 1906)

Theorem
The set of f-vectors of 3-dimensional polytopes is the set of all
integer points in a 2-dimensional cone:

f (P3) = {(f0, f1, f2) ∈ Z3 : f0 − f1 + f2 = 2,
f2 ≤ 2f0 − 4,
f0 ≤ 2f2 − 4 }.



The pairs (f0, f3) for 4-polytopes (Grünbaum 1967)
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The pairs (f0, f3) for 4-polytopes (Grünbaum 1967)

Theorem
The set of pairs (f0, f3) of vertex and facet numbers
of 4-dimensional polytopes
is the set of all integer points between two parabolas:

π03f (P4) = {(f0, f3) ∈ Z2 : f3 ≤ 1
2 f0(f0 − 3),

f0 ≤ 1
2 f3(f3 − 3),

f0 + f3 ≥ 10 }.



The pairs (f0, f1) for 4-polytopes (Grünbaum 1967)



The pairs (f0, f1) for 4-polytopes (Grünbaum 1967)
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The pairs (f0, f1) for 4-polytopes (Grünbaum 1967)

Theorem
The set of pairs (f0, f1) of vertex and edge numbers
of 4-dimensional polytopes
is the set of all integer points between a line and a parabola,
with four exceptions:

π01f (P4) = {(f0, f1) ∈ Z2 : 10 ≤ 2f0 ≤ f1 ≤ 1
2 f0(f0 − 1) }

\ { (6, 12), (7, 14), (8, 17), (10, 20) }.



The pairs (f0, f2) for 4-polytopes (Barnette & Reay 1973)
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The pairs (f0, f2) for 4-polytopes (Barnette & Reay 1973)

Theorem
The set of pairs (f0, f2) of 4-dimensional polytopes is the set of all
integer points between two parabolas, except for the integer points
on an exceptional parabola, and ten more exceptional points:

π02f (P4) =
{

(f0, f2) ∈ Z2 : 5 ≤ f0,

f0 + 3
2 + 1

2

√
8f0 + 9 ≤ f2,

f2 ≤ f 2
0 − 3f0,

f2 6= f 2
0 − 3f0 − 1

}
\ { (6, 12), (6, 14), (7, 13), (7, 15), (8, 15),

(8, 16), (9, 16), (10, 17), (11, 20), (13, 21) }.



The pairs (f0 + f3, f1 + f2) (Brinkmann & Z. 2017)



Lecture 4:
My Top Ten List of Examples



The List

1. A pentagon that tiles
2. A polyhedron that tiles
3. The pseudo-rhombicuboctahedron
4. A centrally-symmetric neighborly polytope
5. The 24-cell
6. The stellated 120-cell
7. The Klee–Walkup polytope
8. A neighborly cubical polytope
9. The Hansen polytope of a 4-path

10. The 4-simple, 4-simplicial Wythoff polytope



1. A Pentagon That Tiles

Casey Mann, Jennifer McLoud-Mann & David Von Derau (2015)

Image: Mann, McLoud-Mann & Von Derau (2015), arXiv:1510.01186

arXiv:1510.01186


1. A Pentagon That Tiles
Theorem (Michaël Rao, 2017)
All pentagons that tile the plane are given by the list of 15 known
families.

Image: Wikipedia



2. A Polyhedron That Tiles
f (E ) = (38, 106, 70) (Engel 1981)



2. A Polyhedron That Tiles



2. A Polyhedron That Tiles

OPEN PROBLEMS:
I How many vertices/facets can polyhedron have that tiles?
I Is the maximum finite at all, in any dimension?



3. The Pseudo-Rhombicuboctahedron

. . . also known as “Miller solid” or “Johnson body J37”

. . . first appears in paper by Sommerville (1906)



3. The Pseudo-Rhombicuboctahedron

OPEN PROBLEM:
Complete and correct write-up of the classification of the
Archimedian solids, including
— combinatorial classification
— existence
— uniqueness



4. A Centrally-symmetric Neighborly 4-polytope

P := conv
{

∆4 ∪ (−∆4)}

f = (10, 40, 60, 30), simplicial, centrally symmetric neighborly!

Its boundary arises as (2× 5)-multi-chessboard complex

Recent discovery (Engström, A. Haase, Stump, Z.):
not vertex-decomposable!

OPEN PROBLEM:
“How neighborly can a centrally-symmetric polytope be?”
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5. The 24-Cell



5. The 24-Cell

Paffenholz (2005)
OPEN PROBLEM:
How does the realization space of the 24-cell look like? What’s its
dimension? Is it a manifold? [Rastanawi 2018]



6. The Stellated 120-Cell

f -vector f = (720, 5040, 5040, 720)

OPEN PROBLEM:
• Does this polytope have rational coordinates?
• Is it projectively unique?



6. The Stellated 120-Cell

f -vector f = (720, 5040, 5040, 720)

OPEN PROBLEM:
• Does this polytope have rational coordinates?
• Is it projectively unique?



7. The Klee–Walkup Polytope

Klee & Walkup (1967) constructed a simple 4-polytope Q4 with 9
facets and graph diameter 5 that is tight for the Hirsch conjecture.
Its dual has f -vector (9, 36, 54, 27): dual-to-neighborly!



7. The Klee–Walkup Polytope
OPEN PROBLEMS:
• Identify this polytope in the classification neighborly 4-polytopes

by Altshuler & Steinberg (1973).
• Is it the polytope that is extremal for the monotone upper bound

problem, according to Pfeifle (2005)?
• The Hirsch conjecture for d = 4.

Pfeifle’s Q̃4:



8. A Neighborly Cubical Polytope
A 4-polytope with the graph of the 5-cube:

conv
{

(2Q × Q) ∪ (Q × 2Q)
}

for a square Q = [−1, 1]2.

OPEN PROBLEM:
Are there centrally-symmetric neighborly n-cubical d-polytopes for
all n > d ≥ 4?
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9. The Hansen Polytope of a 4-Path

Hansen’s (1977) construction applied to the path P4:
◦ centrally-symmetric
◦ dimension d = 5
◦ f -vector (16, 64, 98, 64, 16)
i.e. 3d + 16 non-empty faces.

OPEN PROBLEMS:
• Kalai’s 3d -conjecture:

Does every c.s.-polytope have at least 3d non-empty faces?
• Also Kalai:

Does every c.s.-polytope have at least 2dd! complete flags?
• Mahler’s conjecture:

Does every c.s. convex body have V (B)V (B∗) ≥ 4d/d!
• And what is the connection between these three conjectures?
(All of them are supposed to be tight at the Hanner polytopes.)
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10. The 4-Simple, 4-Simplicial Wythoff polytope

◦ finite if
1

r + 1
+

1
s + 1

+
1

t + 1
> 1

◦ dimension d = r + s + t
◦ (r + 2)-simplicial and (s + t − 1)-simple

“241” has dimension 8, is 4-simplicial 4-simple, f -vector
(2160, 69120, 483840, 1209600, 1209600, 544320, 144960, 17520)

OPEN PROBLEM:
Is there a 5-simple 5-simplicial polytope (other than the simplex)?
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10. The 4-Simple, 4-Simplicial Wythoff Polytope

Image: Wikipedia



11. A 4-Polytope with Only Icosahedra as Facets

Is there a 4-polytope all whose facets are icosahedra?

This is a Problem by Perles & Shephard 1967.

Kalai has observed that such a polytope has fatness larger than 10!

This follows from
f03 = 12f3: Each facet has 12 vertices on average.
f03 ≥ 12f0: Each vertex is in at least 12 facets, so f0 ≤ f3
f02 = 3f2: Each 2-face has three vertices.
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